P53- and mevalonate pathway–driven malignancies require Arf6 for metastasis and drug resistance
نویسندگان
چکیده
Drug resistance, metastasis, and a mesenchymal transcriptional program are central features of aggressive breast tumors. The GTPase Arf6, often overexpressed in tumors, is critical to promote epithelial-mesenchymal transition and invasiveness. The metabolic mevalonate pathway (MVP) is associated with tumor invasiveness and known to prenylate proteins, but which prenylated proteins are critical for MVP-driven cancers is unknown. We show here that MVP requires the Arf6-dependent mesenchymal program. The MVP enzyme geranylgeranyl transferase II (GGT-II) and its substrate Rab11b are critical for Arf6 trafficking to the plasma membrane, where it is activated by receptor tyrosine kinases. Consistently, mutant p53, which is known to support tumorigenesis via MVP, promotes Arf6 activation via GGT-II and Rab11b. Inhibition of MVP and GGT-II blocked invasion and metastasis and reduced cancer cell resistance against chemotherapy agents, but only in cells overexpressing Arf6 and components of the mesenchymal program. Overexpression of Arf6 and mesenchymal proteins as well as enhanced MVP activity correlated with poor patient survival. These results provide insights into the molecular basis of MVP-driven malignancy.
منابع مشابه
Arf6 wins the MVP award
The biosynthetic mevalonate pathway (MVP) produces the building blocks for a wide range of biological molecules, from cholesterol to the long-chain prenyl groups that mediate the membrane association of Ras family GTPases (1). Mutations in the tumor suppressor p53 can up-regulate the MVP, a phenomenon that enhances the invasiveness of certain breast cancer cell lines by an unknown mechanism (2)...
متن کاملKnockdown of Arf6 increases drug sensitivity and inhibits proliferation, migration and invasion in gastric cancer SGC-7901 cells
ADP-ribosylation factor 6 (Arf6), a member of the ADP-ribosylation factor family, is overexpressed in different types of cancer cell and promotes invasion, metastasis and drug resistance. However, the potential functions of Arf6 in gastric cancer (GC), and the molecular mechanism underlying these functions, remain to be fully elucidated. In the present study, the results demonstrated that in vi...
متن کاملCould drugs inhibiting the mevalonate pathway also target cancer stem cells?
Understanding the connection between metabolic pathways and cancer is very important for the development of new therapeutic approaches based on regulatory enzymes in pathways associated with tumorigenesis. The mevalonate cascade and its rate-liming enzyme HMG CoA-reductase has recently drawn the attention of cancer researchers because strong evidences arising mostly from epidemiologic studies, ...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملLysophosphatidic acid activates Arf6 to promote the mesenchymal malignancy of renal cancer
Acquisition of mesenchymal properties by cancer cells is critical for their malignant behaviour, but regulators of the mesenchymal molecular machinery and how it is activated remain elusive. Here we show that clear cell renal cell carcinomas (ccRCCs) frequently utilize the Arf6-based mesenchymal pathway to promote invasion and metastasis, similar to breast cancers. In breast cancer cells, ligan...
متن کامل